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Abstract
We study the ground state �0 = ∑

aX|X〉 of N hard-core bosons on a finite
lattice in configuration space, X = {x1, . . . , xN }. All aX being positive, the
ratios aX/

∑
aY can be interpreted as probabilities Pa(X). Let E0 denote the

energy of the ground state and |∂X| the number of nearest-neighbour particle–
hole pairs in the configuration X. We prove the concentration of Pa onto X
with |∂X| in a

√|E0|-neighbourhood of |E0|, show that the average of aX
over configurations with |∂X| = n increases exponentially with n, discuss
fluctuations about this average, derive upper and lower bounds on E0 and give
an argument for off-diagonal long-range order in the ground state.

PACS numbers: 0530J, 0550, 7510J

1. Introduction

Bosons on a lattice interacting via an infinite on-site repulsion (hard-core bosons) represent
a system of double interest. This is the simplest example of an interacting Bose gas and,
thus, the most promising candidate for a rigorous treatment of Bose–Einstein condensation
of interacting particles. The model is also known to be equivalent to a system of 1

2 spins
(Matsubara and Matsuda 1956) coupled via the X and Y and possibly the Z components of
neighbouring spins and exposed to an external magnetic field in the Z direction. Ordering
of the planar component of the spins is equivalent to Bose–Einstein condensation or the
appearance of an off-diagonal long-range order (ODLRO, Yang 1962) in the system of bosons.
Apart from some exceptions, such as bounds on the density of the condensate (Tóth 1991)
or the discussion of the model on complete graphs (Tóth 1990, Penrose 1991), the most
interesting rigorous results were formulated in spin terminology and obtained by the use of a
particular symmetry, reflection positivity (Dyson et al 1978, Kennedy et al 1988, Kubo and
Kishi 1988). This introduced limitations on the value of the external field (zero field) and
the lattice type (essentially hypercubic lattices). Expressed in terms of a boson gas, ODLRO
was shown only at half-filling on hypercubic lattices: in the ground state in dimensions � 2,
and for positive temperatures above two dimensions. The proof of ordering does not offer
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much insight into the structure of the state. The only case in which details are known is the
mathematically nice but physically trivial example of the complete graph (Tóth 1990, Penrose
1991).

In this paper we provide information concerning the ground state �0, valid for very
different lattices and arbitrary particle densities. The main result is the proof of a strong
non-uniformity of �0 in configuration space. It appears mathematically in the form of a
large-deviation principle and makes the ground state resemble a thermal Gibbs distribution
of a classical gas on the same lattice. It also leads to an approximate expression for �0

and to an argument for Bose–Einstein condensation in the ground state in two and higher
dimensions.

Let L be an infinite lattice which, for the sake of simplicity, will be supposed to be regular
with a constant coordination number (degree) k. Throughout the paper � denotes a finite
connected part of L taken with periodic boundary conditions so as to keep the degree constant
(not really essential). The Hamiltonian we are going to study in detail is

H0 = −
∑
〈xy〉
(b∗
xby + b∗

ybx). (1)

We write x, y, . . . for the vertices (sites) and 〈xy〉 for the edges (nearest-neighbour pairs); b∗
x

and bx create, respectively, annihilate a hard-core boson at x. Boson operators at different sites
commute with each other, while

b∗
xbx + bxb

∗
x = 1 (2)

accounts for the hard-core condition. Correspondence with spin models is obtained by setting
bx = S−

x and b∗
x = S+

x . The Hamiltonian conserves the number of bosons,

N =
∑
x∈�
nx =

∑
x∈�
b∗
xbx (3)

and is also invariant under particle–hole transformation. We can, therefore, fix N so that
ρ = N/|�| is between 0 and 1

2 . (Here and below, ifA is a finite set, |A| denotes the number of
elements.) LetX, Y, . . . denoteN -point subsets of�, also called configurations. A convenient
basis is formed by the states

|X〉 =
(∏
x∈X
b∗
x

)
|0〉 (4)

where |0〉 is the vacuum state. According to the Perron–Frobenius theorem, there is a single
ground state �0 whose coefficients in the basis (4) are positive. Let a = (aX) denote the
vector of these coefficients. Since the unique source of energy is hopping constrained by an
on-site exclusion, we can expect that aX increases, at least ‘on average’, with an increasing
number of nearest-neighbour particle–hole pairs. More precisely, let ∂X denote the set of
nearest-neighbour particle–hole pairs for X (the ‘boundary’ of X) and �n the ensemble of
configurations X with ‘boundary length’ |∂X| = n. It is easily seen that

|∂X| = 〈X|H 2
0 |X〉 = 〈X|�|X〉 (5)

where

� =
∑
〈xy〉

[nx(1 − ny) + ny(1 − nx)] (6)
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is the diagonal part of H 2
0 , and |�n| is the multiplicity of the eigenvalue n of �. We expect

that the X dependence of aX appears mainly through |∂X|, and the average

αn = 1

|�n|
∑
X∈�n

aX (7)

is some increasing function of n. We shall indeed find that αn rapidly grows with n—
exponentially fast for n of the order ofN and even faster for smaller n. To make a comparison
with the free Bose gas, let us note that the ground state of the latter reads

�free = |�|−N/2
∑

{mx�0}x∈�:
∑
mx=N

√
N !∏
x∈� mx!

∏
x∈�
(a∗
x )
mx |0〉 (8)

where a∗
x is the ordinary boson creation operator at x. If we project out the part with no particle

encounters, we find constant ×∑ |X〉, the sum going over the basis (4). This uniform sum is
qualitatively very different from what we actually find for the ground state, and the energy of
this state will also be found to be extensively higher than that of the ground state.

We start, in section 2, by studying the probability measure

pa(n) = |�n|αn∑
m |�m|αm . (9)

We show that the mean value according to pa is |E0|, the modulus of the ground state energy,
while the mean-square deviation D2

a is of the order of N , so that pa(n) is concentrated onto
integers with |n− |E0|| of the order of

√
N . In section 3 we evoke a large-deviation principle

for the Ising model on the same lattice, having the approximate form

q(n) ≡ |�n|∑
m |�m| ∝ e−(n−M)2/2D2

. (10)

Here M = |∂X|, the (arithmetic) mean of boundary lengths among N -point configurations
(and also the modulus of the energy of the projected free-boson ground state) and D2 is the
corresponding mean-square deviation of |∂X|. We derive a formula for D2 as a function of ρ
and k (M = kρ(1−ρ)|�| can be obtained trivially). In section 4 we use the results on pa and q
to give an approximate expression forαn in terms ofE0,Da ,M andD. We present an argument
for the monotonicity of αn and deduce from it upper and lower bounds on Da/D, predicting
αn = constant if |E0|/M = 1 asymptotically (as |�| and N go to infinity). The variational
treatment in section 5 shows that |E0|/M > 1 in the thermodynamic limit. A notable exception,
with |E0| = M = N(|�| − N), is the complete graph where by permutational symmetry we
actually have aX = constant. In section 5 we also present lower bounds onE0 for all densities.
The physical consequences of our findings are summarized in section 6. Here we provide an
argument for the existence of ODLRO in two- and higher-dimensional models. It is based on
a hypothesis which also permits us to estimate the dimension dependence of the deviations
of aX from the average α|∂X| and to conclude that these deviations are irrelevant above two
dimensions. In section 7 we briefly discuss extensions to Hamiltonians with more complicated
interactions.

2. Non-uniformity of the ground state

The results of this section are valid for any connected, not necessarily regular lattice with all
coordination numbers � k.
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LetA = (AXY )denote the matrix of−H0 in the basis (4). ThenA is the adjacency matrix of
a graphGwhose vertices are the configurations, and two configurationsX and Y form an edge
ofG if and only if their symmetric difference is an edge of�: X \Y ∪Y \X = {x, y} = 〈xy〉.
We denote the largest eigenvalue of A by λ1 and the corresponding eigenvector by a = (aX).
The ground state energy and wavefunction are related to them through E0 = −λ1 and
�0 = ∑

aX|X〉. The coefficients of the ground state wavevector a being positive, aX/
∑
aY

can be interpreted as a probability Pa(X) of X. As we shall see, Pa(X) is very far from being
a uniform distribution that one can find on complete graphs.

A well known fact concerning adjacency matrices is that (An)XY provides the number of
walks of length n in G between X and Y (Biggs 1974). Let

Wn(X) =
∑
Y

(An)XY (11)

the number of walks of length n starting from X. First, we note that the expectation value of
this number with respect to Pa ,

〈Wn〉a ≡
∑
X

Wn(X)aX
/∑
X

aX = λn1 = 〈W1〉na. (12)

This follows by taking the X component of the vector equation Ana = λn1a, summing over X
and dividing by

∑
aX. The above equality holds true for any simple graph: the probability

measure Pa ‘sees’ the graph as if it were regular with a degree λ1.
Next, we make use of the fact that actually we are dealing with a sequence of graphs,

G = G�,N , having the particular property that the typical degree is of orderN while its change
between neighbouring vertices is of order one. The degree of X is its number of neighbours,
W1(X). There is a one-to-one correspondence between nearest-neighbour particle–hole pairs
if X is considered as a subset of � and neighbours of X as a vertex in G. Therefore, ∂X can
be identified with the set of neighbours ofX inG and we haveW1(X) = |∂X|. When passing
from X to a Y ∈ ∂X a neighbouring particle–hole pair is interchanged. For both the particle
and the hole the number of neighbours of the opposite kind can change by at most k − 1,
whence

|W1(X)−W1(Y )| � 2(k − 1) if Y ∈ ∂X. (13)

Now

W2(X) =
∑
Y∈∂X

|∂Y | (14)

which together with (13) yields

|W1(X)
2 −W2(X)| � 2(k − 1)|∂X|. (15)

Taking the expectation value and using (12),

0 � D2
a ≡ 〈W 2

1 〉a − 〈W1〉2
a � 2(k − 1)λ1. (16)

By Chebyshev’s inequality we then find that for any ε > 0

Pa
(|W1 − λ1| >

√
2(k − 1)λ1/ε

)
< ε (17)

or equivalently ∑
|W1(X)−λ1|�

√
2(k−1)λ1/ε

aX � (1 − ε)
∑
aX. (18)
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Similarly to (14),

Wn(X) =
∑
Y1∈∂X

∑
Y2∈∂Y1

. . .
∑

Yn−1∈∂Yn−2

|∂Yn−1| (19)

which, together with (13), yields

Wn <

n−1∏
l=0

(W1 + 2(k − 1)l) Wn >

n−1∏
l=0

(W1 − 2(k − 1)l). (20)

These bounds are non-trivial if n� |�|, for example, for n fixed and |�| going to infinity. (In
the opposite limit we have the stronger inequalityWn(X) � (kN)n.) From (20) we obtain

|Wn1 −Wn| �
n−1∑
m=1

(2k − 2)m
( ∑

1�l1<···<lm�n−1

l1 · · · lm
)
Wn−m1 . (21)

Taking the expectation value,

|〈Wn1 〉a − λn1| �
n−1∑
m=1

(2k − 2)m
( ∑

1�l1<···<lm�n−1

l1 · · · lm
)

〈Wn−m1 〉a. (22)

Replacing n by n−m we obtain

〈Wn−m1 〉a � λn−m1 + O(λn−m−1
1 ). (23)

Now λ1 is of order |�|, so finally

|〈Wn1 〉a − λn1| � n(n− 1)(k − 1)[1 + O(|�|−1)]λn−1
1 . (24)

Equations (16)–(18) and (24) describe the concentration of the probability measure Pa on
configurations X whose boundary length |∂X| is in a

√
N -neighbourhood of |E0|. We shall

refer to this property as the non-uniformity of the ground state. Summing over X in �n, Pa
gives rise to the probability distributionpa , which is, hence, peaked about |E0|. In section 4 we
shall arrive at the same conclusion in a different way, by studying first the a priori distribution
q(n) = |�n|/

∑
m |�m|.

3. Large-deviation principle for the a priori distribution

The precise computation of |�n| is a difficult and unsolved combinatorial problem. The
logarithm of this number is the entropy of the Ising model, for energy n, in a microcanonical
ensemble with a fixed magnetization,

∑
x∈� σx = 2N −|�|. Indeed, if we put σx = 1 for x in

X and σx = −1 elsewhere, we obtain an Ising configuration with a density ρ of + spins. The
corresponding union of contours can be identified with ∂Xwhose total length |∂X| is the energy
of the Ising configuration. For such systems there exists a strong version of the equivalence
of ensembles which, applied to our case, states that the distribution q of |∂X| satisfies a large-
deviation principle whose rate function is, apart from a shift, minus the specific entropy s(e, ρ)
of the Ising model (e = n/|�|) (cf Pfister 1991, Dobrushin and Shlosman 1994, Lewis et al
1994). The exact form of the entropy is unknown. To circumvent this problem, we use an
approximate formula for the probability of having a boundary of length n,

q(n) ≈ Z−1 exp

{
− (n−M)2

2D2

}
. (25)
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Here Z ∝ √
N is for normalization and

M = |∂X| = kρ(1 − ρ)|�| D2 = (|∂X| − |∂X|)2 (26)

cf equation (10) in the introduction. The Gaussian approximation is correct in a neighbourhood
of the maximum of the specific entropy if |�|/D2 is non-vanishing in the thermodynamic limit.
This is what we are going to check by explicitly computing the mean-square deviation of |∂X|.
We show that

D2 = [k − 2(2k − 1)ρ(1 − ρ)]kρ(1 − ρ)|�|
= [k − 2(2k − 1)ρ(1 − ρ)]M. (27)

We found this expression first for d-dimensional hypercubic lattices, and have also checked it
for the triangular, honeycomb and Kagomé lattices. The apparent independence of the details of
the lattice is somewhat surprising because our derivation below needs knowledge of the rather
different local neighbourhoods up to next-nearest neighbours. The only common feature of
all of these lattices seems to be that all sites are symmetry-related and thus equivalent. This
alone should therefore suffice to prove equation (27).

Let us note that, with the microcanonical temperature defined as (∂s/∂e)−1, the maximum
of the entropy corresponds to infinite temperature. Therefore, in a neighbourhood of the
maximum we are at a safe distance to the ferro- and antiferromagnetic phase transitions, which
could weaken our approximation through a breakdown (in finite volumes) of the concavity of
the microcanonical entropy (Pleimling and Hüller 2000).

Equation (27) is obtained by filling the sites of� independently and with equal probability
ρ. We expect smaller order corrections to appear if the computation is done with N fixed,
N/|�| = ρ (cf equation (52) below). So in this section X is a random subset of � whose
probability to be selected is ρ |X|(1−ρ)|�|−|X|, and nx = nx(X) is a random variable taking the
value 1 if x is in X and 0 otherwise. Then all nx are independent and take 1 with probability
ρ and 0 with probability 1 − ρ.

We define

fx = nx
∑
y∈∂x
(1 − ny) (28)

where ∂x denotes the set of neighbours of x in �. The boundary length of X is obtained (cf
equations (5) and (6)) as

|∂X| =
∑
x∈�
fx(X). (29)

Thus the mean value of (29) is

M =
∑
x∈�
fx = kρ(1 − ρ)|�| (30)

as claimed earlier.
Let d(x, y) denote the graph distance of x and y in �, i.e. the length of the shortest walk

between them. Since fx and fy are independent if d(x, y) > 2, we find

D2 =
∑
x,y

(fx − fx)(fy − fy) =
∑

x,y: d(x,y)�2

r(x, y) (31)

r(x, y) = fxfy − fx2
. (32)
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The computation of the different terms is straightforward by observing that n2
x = nx . The

contribution of the diagonal terms x = y is the same for any k-regular lattice. Namely,

f 2
x = kρ(1 − ρ) + k(k − 1)ρ(1 − ρ)2 (33)∑
x∈�
r(x, x) = |�|r(x, x) = [k − (2k − 1)ρ + kρ2]M. (34)

The contribution of nearest-neighbour pairs depends on the number of triangles containing a
given edge. If there are . such triangles then

fxfy = ρ2[.(1 − ρ) + [(k − 1)2 − . ](1 − ρ)2] (35)∑
x,y: d(x,y)=1

r(x, y) = k|�|r(x, y) = ρ[.ρ − (2k − 1)(1 − ρ)]M. (36)

If x and y are next-nearest neighbours to each other, they may have m common nearest
neighbours. Then

fxfy = ρ2[m(1 − ρ) + (k2 −m)(1 − ρ)2]

r(x, y) = mρ3(1 − ρ). (37)

In d-dimensional hypercubic lattices (k = 2d) there are next-nearest-neighbour pairs with
m = 1 and m = 2. Their contribution to D2 is∑

x,y: d(x,y)=2

r(x, y) = k|�| r(x, y)m=1 + 4

(
d

2

)
|�| r(x, y)m=2

= ρ2M + (k − 2)ρ2M = (k − 1)ρ2M. (38)

For the triangular lattice (k = 6)∑
x,y: d(x,y)=2

r(x, y) = k|�|[r(x, y)m=1 + r(x, y)m=2] = (k − 3)ρ2M. (39)

In the honeycomb lattice (k = 3) each site has six next-nearest neighbours, all of the type
m = 1. So ∑

x,y: d(x,y)=2

r(x, y) = 2k|�| r(x, y)m=1 = (k − 1)ρ2M. (40)

In the Kagomé lattice (k = 4) there are eight next-nearest neighbours with m = 1:∑
x,y: d(x,y)=2

r(x, y) = 2k|�| r(x, y)m=1 = (k − 2)ρ2M. (41)

Finally, we obtainD2 by adding (34) and (36) with . = 0 and (38) for hypercubic lattices,
(34) and (36) with . = 2 and (39) for the triangular lattice, (34) and (36) with . = 0 and (40)
for the honeycomb lattice and (34), (36) with . = 1 and (41) for the Kagomé lattice. All yield
(27).

If the random variablesfx were independent, the mean-square deviation of their sum would
be given by (34). For any ρ � 1

2 this is larger than the actual value (27), so on average the fx
are negatively correlated. Because . � k − 1, the nearest-neighbour correlation r(x, y) < 0
for all ρ � 1

2 , cf equation (36). On the other hand, according to (37), for next-nearest
neighbours r(x, y) is always positive. Apparently, the induced probability distribution for fx
could be approximated by a Boltzmann–Gibbs distribution written with an antiferromagnetic
nearest-neighbour Hamiltonian for the centralized variables fx − fx and with a temperature
and an external field chosen so as to fit the computed average (30) and nearest-neighbour
correlations (36). If the effective β and field are below their respective critical values we obtain
exponentially decaying antiferromagnetic correlations, and the approximation is qualitatively
correct. Adding next-nearest-neighbour interactions one could fit the computed next-nearest-
neighbour correlations, and so on.
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4. The form of the averaged wavevector

Using the large-deviation result for q(n) we can obtain more precise information on pa(n)
and αn. Apart from normalization pa(n) is obtained by multiplying q(n) with αn. Since, as
we shall see in the next section, λ1 > M and the difference is of the order of N , αn has to
increase exponentially fast—at least in a neighbourhood ofM—so as to shift the expectation
value M of q to the expectation value λ1 of pa . As a result, we obtain the approximate
expression pa(n) ∼ exp −(n− λ1)

2/2D2
a , consistent with our findings in section 2. This is a

second, independent, argument for the non-uniformity of the ground state, assuming the form
of another large-deviation principle for |∂X|. To obtain αn we equate this form of pa(n) with
the other one, (9), where |�n| is estimated through (10). This gives

αn ∼ exp

(
(n−M)2

2D2
− (n− λ1)

2

2D2
a

)
∝ exp

(D2
a −D2) n2 + 2(D2λ1 −D2

aM) n

2D2D2
a

. (42)

For the moment, we have only trivial estimates for λ1 (�M) and Da (cf equation (16)).
More precise bounds on Da can be obtained from the monotonic increase of αn.

The argument telling us that αn should increase for all allowed n is as follows. From the
spectral decomposition of Am we obtain (supposing

∑
a2
X = 1)

aXaY = lim
m→∞ λ

−m
1 (A

m)XY (43)

if � is non-bipartite, and

aXaY = lim
m→∞

1
2 [λ−m

1 (A
m)XY + λ−m−1

1 (Am+1)XY ] = lim
m→∞

1
2λ

−rm
1 (Arm)XY (44)

if � is bipartite; rm = 2m or 2m + 1 if the graph distance dG(X, Y ) of X and Y is even or
odd, respectively. Summing over Y and averaging over X in �n we obtain, for example, for a
non-bipartite �,

αn =
(∑

aY

)−1

lim
m→∞ λ

−m
1

1

|�n|
∑
X∈�n

Wm(X). (45)

Inspecting equation (19) one can conclude that for any m the average of Wm(X) over �n
increases with n and, hence, αn � αn′ if n > n′.

Let nmin and nmax denote the smallest and largest allowed values of |∂X|, respectively.
Since nmin = o(N), monotonicity of αn implies through (42)

nmax − λ1

nmax −M � D
2
a

D2
� λ1

M
(46)

up to an error of o(1). Therefore, the coefficient of n in the exponent of αn is non-negative.
Clearly, λ1/M = 1 would imply Da/D = 1 and αn = constant. In the next section we show
that for finite-dimensional lattices λ1/M > 1 asymptotically and, hence, the two bounds in
(46) form an interval around 1. On bipartite lattices nmax = kN , so at half-filling nmax = 2M
and 1 is in the centre of the interval. It is possible thatDa = D and the exponent of αn is linear
in n. However, even if Da �= D, the quadratic term in the exponent is of the same order as or
even smaller (if n = o(N)) than the linear term.

More information can be extracted from equations (43) and (44) if we combine them with
(18). If m is large enough,

1 − 2ε � 1

Wm(X)

∑
||∂Y |−λ1|�

√
2(k−1)λ1/ε

(Am)XY � 1 (47)
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that is, for any X and any sufficiently large m an overwhelming majority of walks of length
m starting from X on the graph G end up in a vertex whose degree is λ1 + O(

√
N). In the

expression

Wm(X) =
(
aX
∑
aY

)
λm1 + o(λm1 ) (m→ ∞) (48)

obtained from (43), λm1 accounts for this ‘long-time’ behaviour. Let us note that (47) cannot
be understood by imagining the walks on G as realizations of some simple random process.
BecauseG is non-regular (unless� is a complete graph), no Markov process can assign equal
probabilities to all walks of equal length. As an example, for a locally unbiased random motion
(which chooses among neighbours with equal probability) the most probable individual walks
of a given length are the ‘descending’ ones, those going towards vertices of a lower degree, and
the less probable ones are the ‘ascending’ ones. Because of the form (25) of the distribution
of degrees, an X with |∂X| < M has typically more ascending than descending neighbours
and vice versa for |∂X| > M . Therefore, the most probable degrees of end-points of very long
walks would be nevertheless close toM (but not to λ1).

Although the monotonicity of αn holds for all n between nmin and nmax, the validity of
(42) is limited to a neighbourhood of the interval [M,λ1]. In particular, increase of αn for
n = o(N) is much steeper than the exponential predicted by (42). Indeed, let us write the
eigenvalue equation in the form

1

|∂X|
∑
Y∈∂X

aY = λ1

|∂X|aX. (49)

For a d-dimensional lattice nmin = O(N(d−1)/d). If we choose |∂X| = n to be of this order, we
find that the average of aY over ∂X yieldsN1/d times aX! Since q(n) is also rapidly increasing
here, the average over ∂X is dominated by Y with n + 2 � |∂Y | � n + 2k − 2. From this and
the monotonicity of αn we conclude that αn+2k−2/αn is at least of order N1/d .

5. Bounds on the ground state energy

5.1. Variational upper bounds

Variational estimates of the ground state energy are of the form

E0 � 〈ψ |H |ψ〉/〈ψ |ψ〉. (50)

A trivial choice is

ψ =
∑

|X〉 (51)

with the summation going over all N -point subsets of �. It yields E0 � −M where

M = |∂X| = 2|EG|
|VG| = 2|E�|(|�|−2

N−1

)
(|�|
N

) = k(1 − ρ)N + O(1) (52)

cf equation (30). Here |EG| and |VG| denote the number of edges and vertices of G,
respectively, and |E�| the number of edges of�. It is not a priori obvious that this bound can
be improved in the order of the volume, and it is important to know that it really can. In the
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opposite case, if −kρ(1−ρ)were the true ground state energy per site then, as in the complete
graph, the Hamiltonian (1) would have a product ground state in an infinite volume,

� =
∏
x

(
√
ρ |nx = 1〉 +

√
1 − ρ |nx = 0〉) (53)

i.e. no local perturbation could decrease the energy of �. (Because of the product structure,
if the energy could be decreased locally, the specific energy −kρ(1 − ρ) of � could also be
decreased.) Since � shows ODLRO with the value of the order parameter at its theoretical
maximum (ρ(1 − ρ), cf the appendix), by proving it cannot be a ground state we exclude a
trivial scenario for Bose–Einstein condensation.

To prove that |E0| −M is of order N we apply trial functions of the form

ψv =
∑
vX|X〉 vX = v(|∂X|) (54)

i.e. vX depending on |∂X| only. The variational bound (50) reads λ1 � B(v) where

B(v) ≡ (v, Av)
(v, v)

=
∑
n v(n)

∑k−1
i=−k+1 v(n + 2i)

∑
X∈�n Ni(X)∑

n v(n)
2|�n| . (55)

Here Ni(X) is the number of those neighbours of X having a boundary length |∂X| + 2i. In
equation (55) we have used (13) and the fact that the parity of |∂X| is the same for allX: even
if N is even and that of k if N is odd.

The form (42) of αn suggests that the best choice for v(n)would be exn+yn2
with x of order

1 and y of order 1/N . However, we do not expect the quadratic term to yield a significant
improvement, and choose a simple exponential v(n) = exn with 0 < x < xmax, where

xmax = nmax −M
2D2

. (56)

Then by making use of the large-deviation principle for |∂X| we find

B(v) = 〈n〉x〈e2xi〉[〈n〉x ] (57)

where

〈n〉x =
∑
ne2xn|�n|∑
e2xn|�n| 〈f (i)〉n =

k−1∑
i=−k+1

f (i)
1

n|�n|
∑
X∈�n

Ni(X). (58)

Now, since 〈n〉0 = M and d〈n〉x/dx
∣∣
x=0 = 2D2 , we find

〈n〉x = M(1 + 2xD2/M + O(x2)). (59)

We note that the approximate form (10) would yield the same result. Next, we turn to the
second term of B(v). Obviously, 〈e2xi〉n � e−2(k−1)x . This yields B(v)/M > 1 for ρ
near 0 but not near 1

2 . However, we can use Jensen’s inequality 〈e2xi〉n � e2x〈i〉n together
with the fact that 〈i〉[M] goes to zero as the volume increases. We then conclude that
asymptotically 〈i〉[〈n〉x ] = −constant × x + higher-order terms, so that the average of the
exponential in equation (57) equals 1 − O(x2). Thus, for x small enough we indeed find
B(v)/M > 1.

With somewhat more effort one can actually compute a lower bound on B(v). We do
not make it here, only notice that in optimizing such a bound according to x (and also in
optimizing a lower bound on E0, see below) the knowledge of nmax is necessary. On bipartite
lattices nmax = kρ|�| for all ρ � 1

2 , and it is an easy graphical exercise to see that the same
equality holds for ρ � 1

3 on the triangular and Kagomé lattices. However, for both lattices nmax
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is constant between the densities 1
3 and 1

2 : 2|�| for the triangular and 4
3 |�| for the Kagomé

lattice. This can be seen from the following argument. In general, −nmax is the ground state
energy of the antiferromagnetic Ising model under the restriction that the magnetization is fixed,∑
x∈� σx = (2ρ − 1)|�|. However, we do not need to deal with the restriction. In both cases

the (unrestricted) ground state is known to be highly degenerate. Among the exponentially
large number of ground state configurations there are non-magnetized ones, corresponding to
ρ = 1

2 , others with a concentration of up-spins ρ = 1
3 , and between these two limits ρ can vary

by steps of 1/|�|. The rule is to flip zero-energy spins one by one. The common energy of all
of these configurations is easy to compute from the fact that in each triangle there is precisely
one unsatisfied bond. This fixes the value of nmax as given above.

We also note that the optimal x (which maximizes B(v)) is small: of order 0.1 or smaller.
We shall evoke this fact in the discussion of section 6.

5.2. Lower bounds

In their paper Dyson, Lieb and Simon (DLS) gave a lower bound on the ground state energy
of the spin- 1

2 XY -model (Dyson et al 1978, theorem C.1). Because it corresponds to an upper
bound on the norm of the Hamiltonian (1) in Fock space, it is automatically valid for the
hard-core boson gas (1) at any density. It reads

|E0| � 1

4
|�|

{√
k(k + 2) if k is even

k + 1 if k is odd.
(60)

The above bound is to be compared with the trivial bound |E0| � nmax obtained by writing
equation (49) for an X = X0 which maximizes aX. We then see that (60) is non-trivial for the
d-dimensional hypercubic lattice if ρ > 1

4

√
1 + 1/d, for the triangular lattice if ρ > 1

2
√

3
, for

the honeycomb lattice if ρ > 1
3 and for the Kagomé lattice if ρ > 1

4

√
3
2 .

The bound (60) is the best at ρ = 1
2 and can be improved for lower densities.

If e0 is the ground state energy per site then

|e0| = 〈�0|Ax |�0〉 ≡ 〈�0| 1
2

∑
y∈∂x
(b∗
xby + b∗

ybx)|�0〉 (61)

for any x in �. Ax preserves the number of bosons in �x = {x} ∪ ∂x, therefore it commutes
withPx,j , the orthogonal projection to the subspace Hx,j of states with j particles in�x , where
j = 0, 1, . . . , k + 1. We can write

〈�0|Ax |�0〉 =
k+1∑
j=0

〈�0|Px,jAxPx,j |�0〉
〈�0|Px,j |�0〉 〈�0|Px,j |�0〉. (62)

Since 〈�0|Px,j · Px,j |�0〉/〈�0|Px,j |�0〉 is a normalized positive linear functional,

〈�0|Ax |�0〉 �
∑
j

λmax(j)〈�0|Px,j |�0〉 (63)

whereλmax(j) is the maximum eigenvalue ofAx restricted to Hx,j . Nowλmax(j)was computed
by DLS:

λmax(j) = 1
2

√
j (k + 1 − j). (64)
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The DLS-bound (60) corresponds to the maximum of (64). Let h(t) be obtained by linear
interpolation through the points (j, λmax(j)):

h(t) = 1
2

{
(�t� + 1 − t)

√
�t�(k + 1 − �t�) + (t − �t�)

√
(�t� + 1)(k − �t�)}. (65)

Since h(t) is a concave function, and the right member of (63) can be written as
∫
h(t) dν(t)

with a probability measure ν concentrated on the integers from 0 to k + 1, by Jensen’s
inequality

|e0| � h
(∫

t dν(t)

)
= h

(
k+1∑
j=0

j〈�0|Px,j |�0〉
)
. (66)

The expectation value in the argument of h can be evaluated and yields (k + 1)ρ. Indeed, using
the translation invariance of �0, after a simple algebra we find

k+1∑
j=0

j〈�0|Px,j |�0〉 =
∑
X

a2
X

1

|�|
∑
x∈�

|X ∩�x |. (67)

Let χX and χ�x denote the characteristic functions of X and �x , respectively. Then

|X ∩�x | =
∑
y∈�
χX(y)χ�x (y) (68)

and therefore ∑
x∈�

|X ∩�x | =
∑
y∈�
χX(y)

∑
x∈�
χ�x (y) = |X| · |�x | = N(k + 1). (69)

Hence, we obtain

|e0| � min{h((k + 1)ρ), kρ} � 1
2 (k + 1)

√
ρ(1 − ρ) (70)

where the last member results from majorizing h(t) by 1
2

√
t (k + 1 − t). Taking the minimum

in equation (70) is not superfluous. For ρ < 1
k+1 we have h((k + 1)ρ) = 1

2

√
k(k + 1)ρ. Since

nmax/|�| = kρ is smaller for all k, the trivial bound is better for small densities. Actually, the
trivial bound provides the right asymptotics at ρ = 0 because e0 = −kρ + O(ρ2) near ρ = 0,
as one can see by comparing the trivial upper and lower bounds, −M/|�| and −nmax/|�|.

Numerical works on the spin- 1
2 XY model in the square lattice yield an approximate

formula,

e0(ρ) = −1.09766 + 4.835(0.5 − ρ)2 − 1.992 32(0.5 − ρ)4 + 0.859 52(0.5 − ρ)6. (71)

The first two terms come, respectively, from a Monte Carlo (Zhang and Runge 1992) and
a finite-size scaling (Hamer et al 1999) study, to which we have added the fourth- and the
sixth-order terms to obtain e0(0) = 0 and e′0(0) = −4. In figure 1 we have plotted the trivial
upper bound −4ρ(1 − ρ), the formula (71) and the lower bound − min{h((k + 1)ρ), kρ}. We
have also shown numerical points for a 5 × 5 lattice from table 1 of Hamer et al (1999). They
nicely follow the curve (71).

Using the formula (71) we can compute the lower and upper bounds (46) onD2
a/D

2. Both
of them increase monotonically as ρ varies between 0 and 0.5: the lower bound from ∼ 0.66
to 0.902 34 and the upper bound from 1 to 1.097 66, their difference decreasing monotonically
at the same time.
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Figure 1. Approximations of the ground state energy per site as a function of the density in the
square lattice.

6. Off-diagonal order and the final form of the ground state

Off-diagonal long-range order in the ground state is characterized by (cf the appendix)

ω0 ≡ lim
1

|�|2
∑
X

aX
∑
x∈X

∑
y /∈X
aX∪{y}\{x} > 0 (72)

where lim denotes the thermodynamic limit (|�| and N going to infinity and N/|�| going to
ρ). In (72)

∑
a2
X = 1 is supposed.

Let us see, what would we obtain if aX did not fluctuate within �n, i.e. if aX = α|∂X|.
This and (42) would imply another large-deviation principle in the approximate form

∑
X∈�n

a2
X = α2

n|�n| ∼ exp

[
− (n− λ2)

2

2D2
a2

]
(73)

with

λ2 = λ1 +D2
a

λ1 −M
2D2 −D2

a

D2
a2 = D2D2

a

2D2 −D2
a

. (74)

The mean value λ2 is larger than λ1 because

D2
a

D2
� λ1

M
< min

{
1

1 − ρ ,
k + 1

2k
√
ρ(1 − ρ)

}
< 2 (75)

see equation (70). As

||∂(X ∪ {y} \ {x})| − |∂X|| � 2k (76)
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with aX∪{y}\{x} � α|∂X|−2k we would find

ω0 � lim exp

(
−2k(λ1 −M)

2D2 −D2
a

)
> 0. (77)

The argument above, together with the conclusion (77), may be right in high enough dimensions
but it is known to be incorrect in one dimension. Fluctuations have to be taken into
account.

A way to prove (72) would be to show

aX∪{y}\{x} � caX (78)

for all X, x and y with a c > 0 independent of � and N . If (78) did hold true, we would
find ω0 � cρ(1 − ρ) > 0. In the complete graph (78) is verified with c = 1 and equality
sign. However, we know already from the considerations following equation (49) that in
finite-dimensional lattices (78) cannot hold for all X: e.g., in the case when |∂X| ∝ N1−1/d ,
equation (78) can be satisfied only with c ∝ N−1/d . Also, we should not be able to prove (78)
in one dimension. Below we present an argument which takes into account fluctuations and
distinguishes between one, two and higher dimensions.

First, we note that we need (78) only for X in a subset S(�,N) such that the sum of a2
X

over S is non-vanishing in the thermodynamic limit. Let us introduce a function R(X) by
setting aX = α|∂X|eR(X). Then∑

X∈�n
eR(X) = |�n| �

∑
X∈�n

e2R(X) � |�n|2 (79)

so we can define an εn such that 0 � εn � 1 and∑
X∈�n

e2R(X) = |�n|1+εn . (80)

Using this and equation (42) we find

∑
X∈�n

a2
X = α2

n|�n|1+εn ∼ exp

[
− (n−Mn)2

2D2
n

]
(81)

with

Mn = λ1 +
(1 − εn)D2

a

2D2 − (1 − εn)D2
a

(λ1 −M) D2
n = D2D2

a

2D2 − (1 − εn)D2
a

. (82)

Because of the possible n dependence of Mn and Dn, equation (81) may not describe a
large-deviation principle. However, Mn and Dn satisfy the inequalities λ1 � Mn � λ2 and
Da/

√
2 � Dn � Da2 and, hence, for any ε > 0

lim
∑

(1−ε)λ1�|∂X|�(1+ε)λ2

a2
X = 1. (83)

For S we can take the set of summation with any ε � 0.
Next, we observe that by using equations (43) and (44) we can write

aX

aY
= lim
m→∞

Wm(X)

Wm(Y )
or lim

m→∞
λ1Wm(X) +Wm+1(X)

λ1Wm(Y ) +Wm+1(Y )
(84)

for non-bipartite or bipartite lattices, respectively. The convergence in (84) is usually slow.
However, we expect that if |∂X| and |∂Y | do not differ too much then, at least up to the
order of magnitude, aX/aY can be approximated by the ratio of the number of walks whose
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length is the distance between X and Y . Thus, we conjecture that for |∂X| = c1N and
||∂Y | − |∂X|| � c2∣∣∣∣ln aXaY − ln

WdG(X,Y )(X)

WdG(X,Y )(Y )

∣∣∣∣ � c3 (85)

where c3 may depend on the constants c1 and c2 but not on the size of the system. In what
follows, we examine the consequences of this hypothesis.

If the aspect ratios of� are kept bounded, its diameterL is of order |�|1/d and the diameter
of G is of order Ld+1. Over such a distance (85) allows a gigantic change of aX. However,
the distance to be considered for (78) is much smaller. If the symmetric difference of X and
Y is {x, y}, it is easily seen that dG(X, Y ) = d(x, y) � L. Let |∂X| = n ∝ N . Above one
dimension we apply the inequalities (20) to obtain

WdG(X,Y )(X)

WdG(X,Y )(Y )
�
(

1 + 2(k − 1)L/n

1 − [2(k − 1)L + 2]/n

)L
. (86)

In the thermodynamic limit the upper bound remains finite in two dimensions and converges
to 1 in higher dimensions, so we obtain the necessary estimate (78). In one dimension there
exists no convergent upper bound. Thus, we find ODLRO in the ground state in two and higher
dimensions but not in one dimension.

The difference between 2 and 2 + ε dimensions in the convergence of the right-hand side
of equation (86) indicates that d = 2 is the critical dimension above which the deviations of
aX from the average α|∂X| are irrelevant. This remark can be made quantitative if we observe
an interesting consequence of the hypothesis (85) on R(X). If |∂X| ∝ N then inside a sphere
of radius ∝ √

N , centred atX, for all Y such that ||∂Y |−|∂X|| is bounded by some constant of
the order of unity |R(Y )−R(X)| also remains below another constant of order 1. Comparing
the scale ∼ √

N with the diameter ∼N1+1/d of G we conclude that

|R(X)| � maxR(Y )− minR(Y ) < constant ×N 1
2 +1/d . (87)

The maximum and the minimum are taken over �|∂X|. The first inequality holds because for
any n the average of R(X) over �n is negative, but R(X) cannot be negative for all X.

According to equation (87),

aX = exp[F(|∂X|) + R(X)] = exp
[
F(|∂X|) + O

(
N

1
2 +1/d

)]
. (88)

Therefore, in one dimensionR(X) can dominateF(|∂X|), in two dimensions it can vary on the
same scale ∼N , and above two dimensions the variation of R(X) is negligible compared with
that of F(|∂X|). Apart from an additive constant necessary for normalization, the approximate
form of F(n) = ln αn can be read off from equation (42).

The upper bound in the right-hand member of equation (87) could, of course, overestimate
the order of magnitude of the maximum of |R(X)|. However, because it seems to correctly
distinguish between one, two and higher dimensions, it is probably sharp. This also implies
that on the scale ∼ √

N the function R(X) can be considered as describing a ballistic motion
overG rather than a random fluctuation about a negative average, which would lead to a smaller
bound. Accepting ballisticity on smaller scales as well, one can find the order of magnitude
of local variations of R(X). We distinguish between two cases.

(a) If� is bipartite with sublattices V1, V2 thenG is also bipartite with sublattices @1 = {X :
|X ∩ V1| is even} and @2 = {X : |X ∩ V1| is odd}. Along each path in G the subsequent
terms belong to alternating sublattices. If ∂ 2X denotes the set of second neighbours ofX
then

|R(X)− R(Y )| < constant ×N−1/2 if Y ∈ ∂ 2X and |∂Y | = |∂X|. (89)
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(b) If � is not bipartite, neither is G, and no systematic compensation of terms of different
signs is possible. In this case

|R(X)− R(Y )| < constant ×N−1/2 if Y ∈ ∂X and |∂Y | = |∂X|. (90)

The result on ODLRO could be obtained from (89) and (90) as well.

As the two-dimensional case is marginal, some subtle logarithmic corrections, that we do
not see, may modify our conclusions.

Above two dimensions we also find, as a further consequence of equation (87), that εn
vanishes identically in the thermodynamic limit. Thus, Mn/λ2 → 1 and Dn/Da2 → 1,
equation (81) coincides asymptotically with equation (73), equation (77) provides a valid
lower bound on the order parameter, and equation (83) can be replaced by

lim
∑

(1−ε)λ2�|∂X|�(1+ε)λ2

a2
X = 1 (91)

for any ε > 0. This property makes a2
X similar to a thermal Gibbs state for a classical lattice gas.

The classical Hamiltonian (with 1/kBT incorporated) isHeff(X) = −2F(|∂X|)−2R(X), and
there is asymptotic equivalence between the canonical distribution and a microcanonical one
concentrated onX withHeff(X) in an o(N) neighbourhood of the canonical expectation value
ofHeff . This holds in spite ofHeff containing long-range interactions. Indeed, −F is a sum of
nearest-neighbour repulsive two-body interactions, fx , and, if Da �= D, properly normalized
long-range four-body interactions, fxfy , see equations (28), (29) and (42), the whole yielding
a global repulsion which tends to maximize |∂X|. Now R may also include up to N -body
interactions, but because R(X) = o(N) and because a2

X corresponds to a high-temperature
Gibbs state, it can be neglected: the fact that R may partly split the ground state degeneracy
of −F is irrelevant at high temperatures.

We have no rigorous proof that the limiting effective Gibbs state is a pure (in particular,
a high-temperature) state. For this we should show that for all densities and all relevant n,
2F(n)/n < Kc, the critical coupling of the Ising model on the same lattice. Even if we knew
λ1 exactly, our bounds (46) on Da/D are not good enough to obtain this information. For
example, in the case of the square lattice we can use the numerical fit (71). If we assume that
Da � D, we obtain 2F(n)/n � 2(λ1 −M)/D2 where the upper bound increases with ρ and
its maximum at ρ = 0.5 is 0.3906 < Kc = 0.4407. On the other hand, if we use the lower
bound for Da , at half-filling we find for n � λ1 that 2F(n)/n � 0.628 > Kc. An indication
of the high-temperature character can be found in the variational estimates, cf the final remark
of section 5.1. In the light of equation (88), trial functions of the form (54) acquire a particular
importance: for d > 2 one could find with them the exact ground state energy per site, and the
optimal exponential ansatz may not be far from the true ground state. The variable x appearing
in the formula (57) corresponds to 1

2βJ of the Ising model. The estimates we have done predict
a value well below the critical one in any dimension: βJ < 0.2 for all densities at k = 3, and
decreases with increasing k, reaching 0 in the complete graph.

Now a2
X, being equivalent to a high-temperature Gibbs state, means that there is

no classical (diagonal) order in the ground state, coexisting with the purely quantum-
mechanical (off-diagonal) one. Diagonal order is characterized by an order parameter operator
O which is diagonal in the basis (4) and for which the ground state expectation value
|�|−2〈�0|O∗O|�0〉 = |�|−2 ∑ a2

X|O(X)|2 has a non-vanishing thermodynamic limit. A
typical example is Oq = ∑

x ei(q,x)nx , associated with a periodic order with a wavevector q.
Due to the correspondence with a Gibbs state, diagonal order in the ground state of the Bose
gas is equivalent to low-temperature order in the associated classical lattice gas. The ground
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state of −F is exponentially degenerate for ρ < 1
2 . However, it is only twofold degenerate on

bipartite lattices at ρ = 1
2 , and the degeneracy is not split by the translation invariant R(X).

Apparently, there is no qualitative argument against a crystalline order at half-filling in the
ground state of the (d > 2)-dimensional purely hard-core Bose gas. The nearest-neighbour
repulsion in −F is simply not strong enough, reflecting the fact that a purely on-site repulsion
in H0, even though infinite, cannot induce such an order.

7. Extensions and concluding remarks

The non-uniformity of the ground state we have found in a purely hard-core gas seems to be a
general property of finite-range Hamiltonians. The extension to more complicated hard-core
Hamiltonians is immediate. Let

H = −
∑
〈xy〉
(b∗
xby + b∗

ybx) +
∑
Vxnx − J

∑
〈xy〉

(
nx − 1

2

) (
ny − 1

2

)
+K({nx})

≡ H0 + V + 1
4J (2�− |E�|) +K (92)

where � is the diagonal part of H 2
0 , cf equation (6), and K may contain further interactions

of a bounded range. Because the terms additional to H0 are diagonal in the basis (4), the
Perron–Frobenius theorem still applies and the ground state wavevector aX > 0. If A is
the matrix of −H then keeping the definition (11) we still have (12), and the inequalities
of section 2 also hold with suitable modifications. In particular, in (13) and (15) 2(k − 1)
is to be replaced by κ = |2 − J |(k − 1) + δV + δK where δV = max〈xy〉 |Vx − Vy | and
δK = maxX,Y∈∂X |K(Y)−K(X)| are of the order of unity, and in (16)–(18) we have κ〈|∂X|〉a
instead of 2(k − 1)λ1. Now

W1(X) = AXX + |∂X| = (
1 − 1

2J
) |∂X| − V (X)−K(X) + 1

4J |E�| (93)

may not be positive and 〈W1〉a = λ1 = −E0 may not be of order N . Therefore, there may not
be a large-deviation principle for the pair (W1, a). However, if we replaceH byHc = H + cI
where I is the identity operator, the ground state vector a will not change. The corresponding
W1 isWc1 (X) = W1(X)− c, andD2

a(W
c
1 ) is also independent of c. Let us choose c = 〈AXX〉a ,

then

λ1 + c ≡ λc1 = 〈Wc1 〉a = 〈|∂X|〉a (94)

and, thus, we have a large-deviation principle for (Wc1 , a) in the same form as for the purely
hard-core interaction.

What really counts for the non-uniformity of a is not the large-deviation principle for
(W1, a) but the variation of W1(X) over the set of N -point configurations. The ground
state is non-uniform if [maxW1(X) − minW1(X)]/

√
N goes to infinity with N . As an

example, let us consider the nearest-neighbour anisotropic Heisenberg model (V = K = 0).
At J = 2, when it is isotropic, for any fixed N we have W1(X) ≡ |E�|/2 and hence
λ1 = |E�|/2 and aX is constant. Away from the isotropy point �W1 is of order N and a is
non-uniform.

If �n = {X : W1(X) = wn}, where w1 < w2 < · · · are the possible values of
W1, one can write down an approximate formula similar to equation (10), namely q(n) ∼
exp[−(wn−W1)

2/2D2(W1)](wn+1 −wn). Interpreting αn as the average of aX over the newly
defined �n, we also have the analogue of equation (42).
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As earlier, we can write aX = exp[F(W1(X)) + R(X)], and equation (79) remains valid.
The approximate form of F is

F(W1(X)) ≈ (W1(X)−W1)
2

2D(W1)2
− (W1(X) + E0)

2

2Da(W1)2
+ constant. (95)

One can replace the infinite on-site repulsion by a finite one provided that stability is
assured, H > − constant × N . The dimension of the N -particle subspace will increase to(|�|+N−1

N

)
. A configuration X becomes a list of N elements containing vertices of � with

possible repetitions that we can write as X = {xnx }x∈�. The neighbourhood relation remains
the same: Y ∈ ∂X if Y can be obtained fromX by moving a single particle along an edge of�,
say, from x into y. The corresponding matrix element of −H is then AXY = √

nx(X) ny(Y ).
Now

∑
Y �=X AXY can vary between k

√
N and

√
2kN when |∂X| varies between k and kN .

However,AXX can be of orderN2 and its change between neighbours is of orderN . Therefore,
we miss a pointwise bound like (13) and cannot repeat the argument of section 2. Nevertheless,
−W1(X) = ∑

Y 〈Y |H |X〉 is still the energy of a classical lattice gas in which the equivalence
of the canonical and microcanonical ensembles implies the analogue of equation (10) and, via
the argument of section 4, the non-uniformity of the ground state.

The real novelty introduced by the additional interactions is the possible coexistence
of classical long-range order with the off-diagonal one. A thorough discussion of this
question, concluding negatively, can be found already in Penrose and Onsager’s 1956 paper.
Nevertheless, a controversy has remained until recently, when reliable quantum Monte Carlo
computations on square lattice models have shown such a coexistence (Batrouni et al 1995).
We hope that the ideas developed in this paper can contribute in the future to further elucidate
this interesting problem.
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Appendix. A digression on ODLRO

Following the standard definition (Penrose and Onsager 1956, PO), we give below the
expression of the ODLRO parameter in terms of (aX), valid for any Bose gas whose
Hamiltonian contains a hard-core repulsion and conserves the number of particles. The density
operator in the ground state �0 (supposed to be normalized) is the orthogonal projection
|�0〉〈�0|. The density matrix in the basis (4) is therefore (aXaY ). From here the one-particle
reduced density matrix σ = (σxy) is obtained by taking a partial trace over N − 1 particle
positions,

σxy =
∑
X′
aX′∪{x}aX′∪{y}. (A1)

In the above sum X′ runs over the (N − 1)-point subsets of � not containing x and y. The
matrix σ is real-symmetric, positive semidefinite (in fact, positive definite forN > 2), its trace
is N and all its elements are positive. A possible choice for the order parameter, according to
PO, is

ω = |�|−2
∑
x,y∈�

σxy. (A2)
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Another definition of PO for the order parameter is 1/|�| times the largest eigenvalue of σ .
If � is a shift-invariant set (which supposes periodic boundary conditions), the ground state
is translation invariant and σxy = σx−y . Applying the Perron–Frobenius theorem to σ we find
that its largest eigenvalue is

∑
y σx−y = |�|ω, so that the above two definitions coincide. The

order parameter ω also has an interpretation as the density of the Bose–Einstein condensate.
This holds because the operator associated with the density of the condensate is

|�|−1b∗
k=0bk=0 = |�|−2

∑
x,y∈�

b∗
xby (A3)

and because

〈�0|b∗
xby |�0〉 = σxy. (A4)

Inserting (A1) into (A2) we obtain

ω = ω′ +
N

|�|2 ω′ = 1

|�|2
∑
X

aX
∑
x∈X

∑
y /∈X
aX∪{y}\{x}. (A5)

The maximum of ω′ under the condition of normalization is ρ(1 − ρ), attained with aX
constant. It is realized byH0 on complete graphs and by the ferromagnetic Heisenberg model
on arbitrary graphs. Our ω′ is one fourth of the order parameter usually used in the spin- 1

2 XY

model (cf Fujiki and Betts 1986, Hamer et al 1999). There is ODLRO for a density ρ if ω or,
equivalently, ω′ has a non-vanishing limit ω0 > 0 as N and |�| go to infinity while N/|�|
goes to ρ. When this occurs, conservation of the particle number is spontaneously broken and
there appears (at least) a one-parameter continuum of ground states in infinite volume. The
order parameter operator,

∑
b∗
x , is non-diagonal in the natural basis (4) (whence the name

ODLRO). The ground states γα , 0 � α < 2π , are symmetry-related. For any local operator B

γα(B) = γ0

(∏
x

e−iαnxB
∏
x

eiαnx

)
. (A6)

In particular,

γα(b
∗
x) = e−iαγ0(b

∗
x) �= 0. (A7)
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